
Code Smells in Spreadsheet Formulas Revisited on
an Industrial Dataset

Bas Jansen
Delft University of Technology

The Netherlands
b.jansen@tudelft.nl

Felienne Hermans
Delft University of Technology

The Netherlands
f.f.j.hermans@tudelft.nl

Abstract—In previous work, code smells have been adapted
to be applicable on spreadsheet formulas. The smell detection
algorithm used in this earlier study was validated on a small
dataset of industrial spreadsheets by interviewing the users of
these spreadsheets and asking them about their opinion about
the found smells. In this paper a more in depth validation of the
algorithm is done by analyzing a set of spreadsheets of which
users indicated whether or not they are smelly.

This new dataset gives us the unique possibility to get more
insight in how we can distinguish ‘bad’ spreadsheets from ‘good’
spreadsheets. We do that in two ways: For both the smelly and
non smelly spreadsheets we 1) have calculated the metrics that
detect the smells and 2) have calculated metrics with respect to
size, level of coupling, and the use of functions. The results show
that indeed the metrics for the smells decrease in spreadsheets
that are not smelly. With respect to size we found to our surprise
that the improved spreadsheets were not smaller, but bigger. With
regard to coupling and the use of functions both datasets are
similar. It indicates that it is difficult to use metrics with respect
to size, degree of coupling or use of functions to draw conclusions
on the complexity of a spreadsheet.

I. INTRODUCTION

Spreadsheets could be considered the most successful end-
user programming platform, with an estimated 55 million
people using them in the US alone. Because spreadsheets
are so widely used as programming tools, it is plausible to
apply methods from software engineering to them in order to
improve them. This has been done in previous work, among
others by Hermans et al. [1] who translated some of Fowler’s
code smells [2] to the realm of spreadsheets.

In their paper, a method for the detection of spreadsheet
smells is described, including for example a long list of refer-
enced cells or deeply nested conditional formulas. To evaluate
their smell detecting algorithm, Hermans et al. detected smells
in ten spreadsheets created by employees of an investment
bank, and subsequently interviewed the users of these spread-
sheets, asking their opinion about the found smells. This study
had two obvious limitations: firstly, the dataset used in this
evaluation was very small, consisting of only 10 spreadsheets
stemming from one company. Secondly, it was not known in
advance if these spreadsheet were suffering from smells; users
were just asked for ‘complex spreadsheets’.

This paper presents a more extensive investigation of
spreadsheet smells on an entirely new dataset, obtained from
financial modeling company F1F9. Employees of F1F9 de-

velop financial models in Excel for customers, often based
upon the customer’s existing spreadsheet models. We have
obtained 54 pairs of spreadsheets consisting of the original
model developed by the customer and the rebuilt model
created by F1F9 employees. Customers in general reach out
to F1F9 because they cannot maintain their spreadsheets
models anymore, in other words: they are smelly. As such,
these pairs of smelly and non-smelly versions of the same
spreadsheet provide ample opportunity for us to investigate
what characterizes a smelly spreadsheet.

To do so, we have performed an evaluation in which we de-
tected smells for both smelly and non-smelly spreadsheets. We
have applied both the Wilcoxon Signed-Ranks Test for Paired
Samples and the Wilcoxon-Mann-Whitney test to see if there
is significant difference between the two types of spreadsheets.
We find that indeed the rebuilt spreadsheets contain smells less
frequently. In addition to calculating smells, we also calculated
size and coupling metrics of the two types of spreadsheets and
investigated their use of functions. Surprisingly enough, the
rebuilt sheets are not smaller, but bigger, and seem very similar
in terms of coupling and function use. Hence, these metrics do
not offer value when trying to distinguish maintainable from
smelly spreadsheets.

With our work, we improve upon the existing, preliminary,
study in two ways. Firstly, our dataset is bigger, consisting of
108 spreadsheets. More importantly, our set is based on pairs
of spreadsheets, one being an original, smelly spreadsheet, and
the other being a rebuilt, well-structured model, allowing us
to pair-wise compare the models.

The remainder of this paper is structured as follows: in the
next section we give background information about the smells
that we used to analyze the spreadsheets. In Section III we
describe the setup of our analysis. We explain the content of
the dataset and the procedure we followed to calculate the
different metrics. The results of the analysis are presented in
section IV. In Section V we discuss the results in more detail
and put them in the context of the FAST standard that was
used by F1F9 to rebuild the financial models. Several issues
that affect the applicability and suitability of the findings are
discussed in section VI and we finish the paper with related
work (Section VII) and the concluding remarks (VIII).

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

372

II. BACKGROUND

Hermans et. al. [1] introduced 5 smells in spreadsheet
formulas:

• Multiple Operations: Inspired by the code smell Long
Method, this smell indicates the length of the formula. It
measures the total number of operations that a formula
contains. Figure 1 shows a formula that is suffering from
this smell with a total of 15 unique operations within the
formula.

Fig. 1. Example of Multiple Operations Smell

• Multiple References: Another well known code smell
is Many Parameters. The spreadsheet formula equivalent
is Multiple References. It counts the number of ranges
a formula is referring to. An example of this smell is a
formula with 79 references that is shown in Figure 2.

Fig. 2. Example of Multiple References Smell

• Conditional Complexity: Many nested conditional op-
erations are considered as a threat to code readability
[2]. The same is true for spreadsheet formulas. The
Conditional Complexity smell measures the number of
conditionals contained by a formula. Figure 3 shows
a formula with 7 nested IFs functions. This was the
maximum number of nested IFs that was allowed up to
Excel 2003.

Fig. 3. Example of Conditional Complexity Smell

• Long Calculation Chain: In spreadsheets, it is common
that formulas refer to other formulas. Therefore, one

could say that a spreadsheet consists of a collection
of calculation chains. Tracing a long calculation chain
is considered by users as a tedious task. The smell is
measured by the length of the longest path of cells that
need to be referenced when computing the value of the
formula.

• Duplicated Formulas The equivalent of the Duplicate
Code smell in spreadsheets is the Duplicated Formulas
smell. The smell as described in [1] occurs at formulas
that are partially the same as others. The smell is mea-
sured by the number of formulas, located in the same
worksheet and expressed in relative R1C1 notation, with
which a formula shares at least one proper subtree. In the
original study, it was found that users found this smell
hard to understand. Therefore we changed the definition
for this smell. It is now measured by the number of
identical formulas that are located in the same worksheet
and having at least one function or operator. Row 39 in
Figure 4 shows an example of four identical formulas.

Fig. 4. Example of Duplicated Formula Smell

We received the dataset that we use in this paper from F1F91.
They are the world largest financial model building firm.
They build their models using spreadsheets, according to the
FAST standard. The FAST standard [3] was first developed
by employees of F1F9. It is now maintained by the FAST
Standard Organization2. The standard is primarily concerned
with good spreadsheet design. Its acronym stands for Flexible,
Appropriate, Structured, and Transparent. It aims to support
spreadsheet designers to build spreadsheets that: Are free of
fundamental omissions; Have no logical errors; Can be created
under short lead times; Can be easily used and reviewed; Are
readily adaptable when circumstances change.

III. EXPERIMENTAL SETUP

The dataset we use for this paper consists of 54 pairs of
spreadsheets. For every pair one spreadsheet was created by
a client of F1F9, the other one an improved version built by
consultants of F1F9 according to the FAST standard. Both
spreadsheets have the same functionality and deliver the same
results for identical input. However, the models within the
spreadsheets are completely different. F1F9 built their version

1To protect the confidentiality of the models we only had access to the
dataset on F1F9s premises and then only indirectly whereby our software
automatically generated and stored only the necessary survey statistics. At no
point did we have direct access to the models, nor did our software extract
any commercial data from the models.

2http://www.fast-standard.org/

373

completely from scratch. All spreadsheets contain financial
models.

When we received the dataset, it consisted of a total
of 146 spreadsheets. However, we discovered that the set
contained some duplicates and that for some client files the
matching F1F9 file was missing and vice versa. So after an
initial cleaning, a set of 130 files remained. Subsequently, we
analyzed these spreadsheets with the Spreadsheet Scantool,
developed at Delft University of Technology. The tool runs
on the previously developed Breviz core that was made for
spreadsheet visualization and smell detection [4]. Some of the
remaining files were password protected, corrupt or otherwise
unreadable by the scantool and were therefore excluded from
the dataset. Of course if a client file was unreadable, we also
had to exclude the matching F1F9 file. Eventually we ended
up with 108 scanned files.

The spreadsheets in the Client set were perceived by their
users as problematic. It was because of this reason, that they
asked F1F9 to rebuild these models. What makes the dataset
interesting for our research is that we have one set of spread-
sheets that are perceived by their users as problematic and a
matching set of spreadsheets that, according to professional
model builders, are easier to understand, less error-prone and
less difficult to maintain.

In earlier studies regarding smells in spreadsheets the smells
were validated by either asking users about their opinion about
the smelliness [1] or by manual inspecting the detected smells
to see if they were actually smelly [5]. What was missing in
these validations, was ground truth about the smelliness of a
spreadsheet. Fortunately, we can solve this now with the above
mentioned dataset.

One would expect that a spreadsheet that is considered
easier to understand, less error-prone and less difficult to main-
tain contains less smells than a spreadsheet that is perceived
as problematic. This brings us to the main question for this
research:

R1 Do spreadsheets that are perceived as easier to un-
derstand, contain fewer smelly cells than spreadsheets
that are perceived as problematic?

In earlier work [6], metrics for size, coupling and the use
of functions were used to characterize spreadsheets in large
corpora. We will use these metrics to analyze the differences
between the client and the F1F9 spreadsheets. Table I gives
an overview of these metrics.

Most of these metrics are self-explanatory, however a few
deserve some further explanation [6]:

• Number of unique formulas per spreadsheet (s4): It
is common practice in spreadsheets to define a formula
in once cell and then copy it down or right to other
cells. As a consequence, many of the formula cells in
a spreadsheet contain the same formula except for the
references to the other cells. Therefore, we also measure
the number of unique formulas in the spreadsheet. We
determine the unique formulas by looking at the relative
R1C1 notation of the formula. As described by Sajaniemi

TABLE I
OVERVIEW OF METRICS

Dimension Metric
Size s1 # non-empty cells per spreadsheet

s2 # worksheets per spreadsheet
s3 # formulas per spreadsheet
s4 # unique formulas per spreadsheet
s5 length of formula in characters (measured per cell)

Coupling c1 % external links per spreadsheet
c2 # interworksheet connections per spreadsheet
c3 path depth per formula
c4 total number of transitive precedents per formula

Use of functions f1 Number of unique functions per formula
f2 Parse three depth per formula
f3 Number of preceding cells per formula

[7], this notation stays the same even if you copy a
formula down or right.

• Path depth (c3), transitive precedents (c4), and num-
ber of preceding cells (f3): In most cases formulas
receive input from other cells. This is what we measure
with the number of preceding cells per formula. However,
these precedents could be formulas themselves that, in
turn, have their own precedents. The number of transitive
precedents is calculated by tracing along these precedents
until on all branches a cell is reached without any
precedents. The path depth is the longest calculation
chain within the tree of precedents. See also Figure 5.

• Parse tree depth (f2): This metric indicates how nested
a formula is. The formula A1 + A2 has a parse tree depth
of 2, the formula (A1 - A2) / (A3 * SQRT(A5)) a parse
tree depth of 5.

Fig. 5. Precedents, Transitive Precedents, and Path Depth ([6])

Calculating these metrics for the spreadsheets will enable
us to answer the second research question:

R2 What are the differences with respect to size, level
of coupling and the use of functions between spread-
sheets that are perceived as easier to understand and
spreadsheets that are perceived as problematic?

To answer both research questions, we calculated for each
file the metrics that indicate one of the five smells that were
described in Section I and the metrics with respect to size,
coupling, and use of functions.

374

IV. RESULTS

A. Smells

Figure 6 displays the results for the smell metrics. We use
the radar chart to visualize all metrics in a single figure. The
chart shows the relative score for each smell. The F1F9 scores
(red line) are represented as a percentage of the Client scores
(blue line) (Client = 100%).

Fig. 6. Relative score of Smells

For the exact figures see Table II. It shows for each smell
the median of the number of times the smell occurred in each
spreadsheet. The last column gives the score for the F1F9
spreadsheets as a percentage of the score of the Client sheets
and were used in Figure 6.

TABLE II
OVERVIEW OF SMELLS

Metric Client F1F9 F1F9 (%)
Multiple operations 101.0 71.0 70.3%
Multiple references 136.5 49.0 35.9%
Conditional complexity 36.0 15.5 43.1%
Long calculation chain 412.0 444.5 107.8%
Duplicated formulas 296.0 21.5 7.2%

We can see that overall the number of occurrences of
the smells decrease. We observe a dramatic decrease of the
occurrence of the Duplicated formula smell and also see a
clear difference for the Multiple references and Conditional
complexity smells. In Section V, we will explain some possible
causes for these findings. Long calculation chain forms an
exception because the number of occurrences of this smell
is slightly higher in the F1F9 sheets. We have analyzed this
in more detail. Figure 7 shows the boxplot for this smell for
both the Client and the F1F9 sheets. The boxplot displays the
minimum, 1st quartile, median, 3rd quartile, and maximum
value. In the Client data set, there is one spreadsheet with a
calculation chain of 9,995 cells, that can be considered as
an outlier. We have excluded it from the boxplot because
we wanted to visualize the difference in interquartile distance
between F1F9 and the Client, which is not affected by the

outlier. It shows that although the median for the number of
occurrences of the Long calculation smell is slightly higher
for F1F9 than the Client, the 3rd quartile and maximum value
were decreased dramatically. There are fewer spreadsheets that
suffer in a high degree from the Long calculation smell in the
F1F9 dataset.

Fig. 7. F1F9 has a slightly higher median, but a much smaller interquartile
distance

B. Size, Coupling and Use of Functions

The metrics for the dimension size have been summarized
in Figure 8 and the exact figures can be found in Table III. It
turns out that almost every size metric has increased for the
F1F9 spreadsheets. Only the length of the formulas decreases
as compared to the Client sheets. Notable is also the number
of formulas. This metric has increased much more than the
other size metrics.

Fig. 8. Relative score on dimensions of size

To measure the level of coupling, we have analyzed both
the external (to other spreadsheets) and internal (within the
same spreadsheet) links between worksheets, the path depth
per formula and the total number of transitive precedents of a
formula. The results of this analysis are visualized in Figure
9 and the exact figures summarized in Table IV.

375

TABLE III
OVERVIEW OF SIZE METRICS

Metric Client F1F9 F1F9 (%)
s1 # non-empty cells 170,202.0 215,998.5 126.9%
s2 # worksheets 19.5 28.0 143.6%
s3 # formulas 92,954.5 198,711.0 213.8%
s4 # unique formulas 1,467.0 2,094.0 142.7%
s5 formula length 32.0 28.0 87.5%

Fig. 9. Relative score on dimensions of coupling

From the results, it seems that both datasets are almost
identical on the degree of coupling, except for the number
of interworksheet connections. These are much higher within
the F1F9 dataset.

Finally, we have analyzed the use of functions in both
datasets, by looking at the number of unique functions used,
the parse tree depth, and the number of preceding cells per
formula. Figure 10 summarizes the results for these metrics.
Exact figures can be found in Table V.

With respect to the use of functions, both datasets are very
similar. The only difference is the median for the parse tree
depth, which is 3 for F1F9 and 2 for the Client sheets.

C. Significance of the Differences

These results give us an indication of the differences be-
tween smelly and non-smelly spreadsheets. However, we do
not know yet if these differences are statistically significant.
Because we have pairs of smelly and non-smelly spreadsheets
we can do a paired group comparison to determine if there
is a significant difference. To do so, we used the Wilcoxon
Signed-Ranks Test for Paired Samples. However, we can do
this test only for the metrics on spreadsheet level (because we
have pairs of spreadsheets). If the metric is a characteristic of
a formula, a paired comparison is not possible. We do not have
pairs of formulas that we can compare. For these metrics we
have to test if the distribution of the two datasets is different.
We calculated that using the Wilcoxon-Mann-Whitney test.
Both tests give us a p-value that can be found in Table VI.

TABLE IV
OVERVIEW OF COUPLING METRICS

Metric Client F1F9 F1F9 (%)
c1 # external links 0.0 0.0 100.0%
c2 # interworksheet connections 60.5 205.0 338.8%
c3 Path depth 16.0 13.0 81.3%
c4 # transitive precedents 135.0 127.0 94.1%

Fig. 10. Relative score on Use of Functions

We have denoted the metrics on spreadsheet level with an ‘s’
and the metrics that are characteristics of formulas with an ‘f’.

If there was a significant difference, we have calculated the
effect with the Cliff’s Delta d. For both metric s2 (number
of Worksheets) and metric c2 (number of interworksheet
connections) the effect is large (d ≥ 0.47). For Duplicated
formulas, metric c1 (number of external links), and metric
c4 (number of transitive precedents) the effect is medium
(0.33 ≤ d < 0.47). For Conditional complexity, Multiple
references, metric s1 (number of non-empty cells), metric s3
(number of formulas) the effect is small (0.147 ≤ d < 0.33).
For the other metrics the effect is negligible.

V. INTERPRETATION

In the previous section, we have described the results of our
analysis. We found that the F1F9 sheets were less smelly, but,
to our surprise, also bigger. With regards to coupling and the
way functions were used, the sets appear more similar. In this
section, we will further discuss some of these results. Although
we were not able to interview the users of the spreadsheets,
we assume that they perceived the F1F9 spreadsheets as easier
to maintain and less error-prone. If this was not the case,
F1F9 would have gone out of business a long time ago.
But what is causing the difference between the F1F9 and
the Client spreadsheets? Of course the employees of F1F9
build complex spreadsheet models for a living, but maybe even
more importantly they make use of the FAST standard to build
these models. A further explanation of some of the concepts

376

TABLE V
METRICS ON THE USE OF FUNCTIONS

Metric Client F1F9 F1F9 (%)
f1 # unique functions 1 1 100.%
f2 parse tree depth 2 3 150%
f3 # preceding cells 3 3 100%

TABLE VI
STATISTICAL ANALYSIS OF CLIENT AND F1F9 DATASETS

Dimension Metric Level p-value d
Smells Conditional complexity s <0.01 0.158

Duplicated formulas s <0.01 0.412
Multiple Operations s <0.01 0.030
Multiple References s <0.01 0.310
Long calculation chain s <0.05 0.055

Size s1 # non-empty cells s <0.01 0.228
s2 # worksheets s <0.01 0.536
s3 # formulas s <0.01 0.257
s4 # unique formulas s >0.05 -
s5 formula length f <0.01 0.078

Coupling c1 # external links s <0.01 0.400
c2 # interworksheet conn. s <0.01 0.835
c3 path depth f <0.01 0.037
c4 # transitive precedents f <0.01 0.379

Use of f1 # preceding cells f <0.01 0.071
Functions f2 parse Tree Depth f <0.01 0.096

f3 # unique functions f <0.01 0.023

and terminology of the FAST standard will help us to better
understand the found results.

The FAST standard divides a spreadsheet in different hier-
archical levels to organize their guidelines. The highest level
is the workbook itself, followed by the individual worksheets.
According to the FAST standard there can be many worksheets
within a workbook but each worksheet always fits in one of
the following four functional classes:

1) Foundation: The basis for the financial model. These
worksheets contain all the inputs, timing rules, assump-
tions and indexation.

2) Workings: The engine of the model. All calculations
necessary for the final result of the model are made on
these sheets.

3) Presentation: The output of the model, usually made
up of financial statements, charts and summaries. These
sheets are used for decision making by the users of the
model.

4) Control: These sheets assist the builder during the
process of creating the model. It normally contains list
of pending changes, version control, table of contents,
error checking, etc. Furthermore, if scenario planning or
sensitivity analysis is used, they are controlled from this
sheet.

Figure 11 shows several worksheets of a financial model
that was built according to the FAST standard. The sheets
InpC, INpS, and Time are examples of a Foundation sheet;
Ops, Asset, and Finstats are examples of a Workings sheet.

In the FAST standard a worksheet is divided in several
calculation blocks. A calculation block can be considered
as an autonomous paragraph on a worksheet and is always

Fig. 11. An example of a consistent column structure that has been maintained
across all sheets

responsible for a single calculation. Rows 44 through 51
in Figure 12 show an example of a calculation block. The
calculation block itself consists of the ingredients for the
calculation (row 47: Domestic charter landings trough 50:
International scheduled landings) and the actual calculation
(row 51: Total landings).

The lowest level of a financial model is formed by the
individual line items (for example row 49 ‘International charter
landings’ in Figure 12). It’s defined as a unit of information
displayed on a row or column, of its own with its own label.

Fig. 12. Screenshot of a FAST model that shows an example of a calculation
block

In the remainder of this section, we will analyze the possible
effects of the FAST guidelines on the metrics and smells we
have calculated for the F1F9 sheets. We will first discuss the
smells and at the end of the section focus on the metrics for
size, coupling, and the use of functions.

A. Smells

First of all FAST strongly advises to create short and
easy to understand formulas. This explains why we find less
formulas that suffer from the Multiple Operations and Multiple

377

References smells. Furthermore, the standard discourages the
use of IF and even prohibit the use of nested IFs. We see
that reflected in the lower occurrence of the Conditional
Complexity Smell.

FAST also dictates that a calculation should only be made
once. If the result of the calculation is needed somewhere else
in the model, one should link back to the original calculation.
Furthermore, formulas should be consistent along the row or
column axis, meaning that the formula should be created once
and than dragged to the right or the bottom. This is illustrated
in Figure 13. It displays the formulas in the R1C1 notation
to show that all the formulas on a single row have the same
structure. However, they are not identical. The formulas differ
in their references to other cells. In this example a single
formula was copied to 70 columns. If a spreadsheet is designed
in accordance with this rule it means that to understand the
sheet we do not have to inspect 71 cells to check if the
formulas differ somewhere. We just have to inspect the cell in
(in this case) the 10th column. In addition, because the column
structure across the different worksheets is consistent this
holds true for every worksheet. The guidelines of consistent
formulas and defining a calculation only once, explain the
dramatic decrease in the occurrence of the Duplicate formula
smell.

Fig. 13. Example of consistent formulas. The formulas in row 30 and 33
are displayed both in R1C1 (top) and A1 (bottom) notation. Although the
formulas differ in normal notation, the R1C1 notation shows that they are
actually identical.

The number of smell occurrences decreases for four of the
five smells. However, the median for the Long Calculation
Chain in the F1F9 dataset is slightly higher than in the Client
dataset. This is not unexpected, trying to minimize the Multiple
References and Multiple Operations smells (ie breaking long
formulas in shorter parts), inevitable leads to longer calculation
chains.

B. Size, Coupling, and Use of Functions

Based on the size metrics, we can conclude that the F1F9
models grew in size. Within the FAST standard there are
several guidelines that could explain this increase.

• Separate worksheets per functional class: the standard
dictates a strict separation between input (Foundation),
calculation (Workings), output (Presentation), and con-
trol, which causes more worksheets per spreadsheet.

• Maintain consistent column structure across all sheets:
Most financial models are time-related. For example, to
calculate the business case for a major investment it

is necessary to predict the future cash flows over the
life span of the investment (which could easily be 30
years). The FAST standard prescribes to model the time-
dimension along the columns of a worksheet. Because
of this guideline, these time series are repeated on every
worksheet even if that means that on some worksheets
these columns are unused. Figure 11 shows an example of
such a consistent column structure across different sheets.

• Construct all calculations in a separate calculation block:
A calculation block (see Figure 12 for an example)
consists of all the ingredients (inputs) that are necessary
for a calculation. Ingredients can also be used in other
calculations. The standard dictates that in such a case
the ingredients are repeated (by direct linking) to form
a new calculation block. This increases the number of
non-empty cells on a worksheet.

With respect to coupling, the number of interworksheet
connections was the only metric in the F1F9 sheets that
differed from the Client sheets. This could be caused by the
way calculation blocks are constructed according to the FAST
standard. As we already saw, a calculation block consists
of the necessary ingredients and the calculation itself. The
ingredients are often input values that are coming from another
(Foundation) worksheet and thus creating an interworksheet
connection. If the same ingredient is necessary for another
calculation, it will be repeated. However, the FAST standard
forbids a series of linked links, so called daisy chains. We
illustrate this concept with a small example in which for a
certain calculation a start date is needed. The start date is
coming from the sheet ‘InpC’ (which is a Foundation sheet)
and is located in cell F11. The start date is an ingredient for a
calculation block and it is put in cell F12 on the sheet ‘Time’.
The formula for this cell becomes:

F12: = InpC!F$11
This same start date is also needed as ingredient in a second

calculation block (in for example cell F21) on the same sheet.
In general users tend to solve this with:

F21: = F12
However, this creates a daisy chain. The value from cell

F11 on the sheet ‘InpC’ is retrieved via cell F12 on the sheet
‘Time’. To prevent daisy chaining the formula should be:

F21: = InpC!F$11
Applying this guideline will create an additional interwork-

sheet connections every time an input value is re-used in a
different calculation block. It explains why the number of
interworksheet connections in the F1F9 sheets is higher than
in the Client sheets.

The use of functions is similar in both datasets. In earlier
work [6] we saw that in the Enron Corpus the majority of
formulas only make a direct reference to a few other cells, are
hardly nested and within the formula only one function (not
being an operator) is used. Despite the fact that both the Client
and the F1F9 dataset consists of complex financial models, we
see the same kind of metrics with respect to the complexity of
the formulas. Users tend to create simple formulas. Complex
and large formulas do exists but are an exception.

378

VI. DISCUSSION

In the previous sections, we have analyzed the occurrences
of smells and metrics with respect to size, coupling and use
of functions in both the Client and the F1F9 spreadsheets.
In this section, we discuss some topics that could affect the
applicability and suitability of the approach used and the
results found.

A. Threats to Validity

The dataset we received from F1F9 gave us a unique
opportunity to work with complex, real-life, industrial spread-
sheets to investigate what characterizes a smelly spreadsheet.
Unfortunately, this real-life dataset comes with the price of
reduced repeatability. We are strong believers of open data,
but because the spreadsheets contain confidential information,
we were only allowed to analyze them automatically and we
are not able to share them.

A threat to the external validity of our analysis is the
representativeness of the provided dataset. Half of the spread-
sheets were created by a single company. However, the Client
spreadsheets are from different clients. More important is the
fact that all spreadsheets are financial models. Consequently
the findings of our analysis can only be applied to spreadsheets
within the specific domain of financial modeling.

B. Pivot Tables, Charts and VBA code

In our analysis, we limited ourselves to the described smells
and metrics. However the improvements that were made by
F1F9 could also affect the use of more elaborate structures
like Pivot tables, charts and VBA code. In future research, we
plan to specifically analyze these constructs.

C. Calculation Chains

All the smells that we have analyzed are calculated on the
formula level. The same is true for the following metrics that
we used to analyze the size, level of coupling and use of
functions:

• s5 length of formula in characters
• c3 path depth per formula
• c4 total number of transitive precedents per formula
• f1 number of unique functions per formula
• f2 parse three depth per formula
• f3 number of preceding cells per formula

We took the single formula as the object of analysis. We
considered it as the equivalent of a line of code. However,
in a spreadsheet it is always possible to take a formula and
split it over more than one cell. What we consider a line
of code is actually an arbitrary decision of the user. To see
and understand the complete code for a certain calculation,
you need to look at the complete calculation chain. In future
research, we plan to extend the analysis of smells and metrics
to the level of the calculation chain.

VII. RELATED WORK

Our work builds upon the work of Hermans et. al. [1],
in which the concept of spreadsheet smells at the formula
level was introduced. However, for their evaluation they used
a small dataset of which it was not known in advance whether
it contained smelly spreadsheets. In addition to that paper,
Hermans also worked on other types of spreadsheet smells,
for example focusing on detecting smells between worksheets,
rather than within [8]. Other work on spreadsheet smells was
done by Cunha et al. who aim at detecting smells in values,
such as typographical errors and values not following the
normal distribution [5].

A second category of related work aims at defining spread-
sheet metrics. Bregar developed a catalog of spreadsheet
metrics based on software metrics [9]. He however did not
evaluate his metrics in practice. Hodnigg and Mittermeir [10]
also proposed several spreadsheet metrics of which some are
similar to Bregar’s. Their metrics are divided into three cate-
gories: general metrics, such as the number of formulas and
the number of distinct formulas; formula complexity metrics,
such as the number of references per formula, and the length
of the longest calculation chain; and finally metrics, such as
the presence of scripts in, e.g., Visual Basic for Applications
(VBA), user defined functions and external sources. Hole et
al.[11] propose an interesting approach to analyze spreadsheets
in terms of basic spreadsheet metrics, such as the number of
functions used, the presence of charts and the complexity of
program code constructs with the specific aim of predicting
the level of the spreadsheet creator.

A research direction related to smell detection is spreadsheet
refactoring, which also has been addressed by researchers in
recent years. The first to present a semi-automated approach
were Badame and Dig [12], whose refactorings unfortunately
were not directly based on smells. A generalization of this
idea was presented by Hermans and Dig [13].

VIII. CONCLUDING REMARKS

This paper describes the analysis of a new spreadsheet
dataset. This set consists of 54 pairs of spreadsheets, which
both implement the same functionality, but are either smelly
and hard to maintain (client) or well-structured (F1F9).

For each spreadsheet, we calculated the metrics that indicate
formula smells and extended this analysis with additional
metrics for size, coupling and the use of functions. For each
metric we determined whether there was a significant differ-
ence between the client and the F1F9 sheets. If a difference
was found, we calculated the effect size.

Based on this analysis we answered our two research
questions:
R1 Do spreadsheets that are perceived as easier to under-

stand, contain fewer smelly cells than spreadsheets that
are perceived as problematic?

R2 What are the differences with respect to size, level of cou-
pling and the use of functions between spreadsheets that
are perceived as easier to understand and spreadsheets
that are perceived as problematic?

379

Our analysis reveals two interesting points. Firstly, the F1F9
spreadsheets indeed suffer from smells to a much lower extent
than the client sheets. We observed for example that the F1F9
sheets contain fewer duplicated formulas and that formulas
have fewer references to other cells. Secondly, size and
coupling metrics, obvious candidates to measure spreadsheet
complexity, do not succeed in differentiating between the both
parts of the datasets.

Our current analysis gives rise to ample directions for
future work. In this paper we did a pairwise comparison
on spreadsheet level. Because F1F9 rebuilt the models from
scratch, it was not possible to do this on formula level. In
future research, we are planning to analyze the effect of
refactoring spreadsheet formulas in existing models. In such a
case pairwise comparison on formula level is possible.

A spreadsheet that contains fewer smells should be easier
to understand and maintain. In this study, we saw indeed
that the spreadsheets improved by F1F9 contain fewer smells.
However, it was not possible to interview the users of these
spreadsheets to obtain their opinion about the understandabil-
ity and maintainability of the spreadsheets. We believe this
is a promising avenue for future research. We will perform a
case study with users to test if they are able to understand and
maintain a refactored spreadsheet with less effort.

REFERENCES

[1] F. Hermans, M. Pinzger, and A. Deursen, “Detecting code smells in
spreadsheet formulas,” Proceedings of the International Conference on
Software Maintenance (ICSM), 2012.

[2] M. Fowler, Refactoring : improving the design of existing code. Read-
ing, MA: Addison-Wesley, 1999.

[3] FAST Standard Organisation. (2015) The fast standard - practical,
structured design rules for financial modelling, version fast02a.
[Online]. Available: http://www.fast-standard.org/

[4] F. Hermans, “Analyzing and visualizing spreadsheets,” Ph.D. disserta-
tion, PhD thesis, Software Engineering Research Group, Delft University
of Technology, Netherlands, 2012.

[5] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” in Computational Science and Its Applications–
ICCSA 2012. Springer, 2012, pp. 202–216.

[6] B. Jansen, “Enron versus euses: A comparison of two spreadsheet
corpora,” in Proceedings of the 2nd Workshop on Software Engineering
Methods in Spreadsheets, Florence, Italy, 2015.

[7] J. Sajaniemi, “Modeling spreadsheet audit: A rigorous approach to
automatic visualization,” Journal of Visual Languages & Computing,
vol. 11, no. 1, pp. 49–82, 2000.

[8] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012,
pp. 441–451.

[9] A. Bregar, “Complexity metrics for spreadsheet models,” in Proc. of
EuSpRIG ’04, 2004, p. 9.

[10] K. Hodnigg and R. Mittermeir, “Metrics-based spreadsheet visualization:
Support for focused maintenance,” in Proc. of EuSpRIG ’08, 2008, p. 16.

[11] S. Hole, D. McPhee, and A. Lohfink, “Mining spreadsheet complexity
data to classify end user developers.” in DMIN, 2009, pp. 573–579.

[12] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on. IEEE, 2012, pp. 399–409.

[13] F. Hermans and D. Dig, “Bumblebee: a refactoring environment for
spreadsheet formulas,” in Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering. ACM,
2014, pp. 747–750.

380

